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1 Introduction
Inference with modal and higher order logics has a long history of foundational work[7, 6, 8], but
the practical illustrations of the mathematics has most often been limited to proofs of correctness
or complexity[10], exploring the relationships among various axioms, or relatively small problems
where all or most of the axioms are relevant to the particular problem being solved [19]. More
recently work has been done in embedding several different modal operators in a single higher
order logic framework, expanding the scope of possible inferences[3].

If we wish for work in these expressive logics to have applicability to general purpose question
answering, in the context of explainable AI, then much larger and more comprehensive axiom
sets are needed, where necessarily few of those axioms are employed for answering any given
question. Such an exercise should also elucidate how different modalities can be used in common
sense question answering, and how the interactions among these modalities and first order logical
expressions characterising our world govern which axioms to include in a single large theory.

For these reasons we have been exploring how to translate the axioms in the Suggested Upper
Merged Ontology (SUMO)[13, 15] into several different logics that are implemented with different
automated theorem provers.

Several discussions with Richard Crouch over the years, especially with regards to the possibility
of embedding modalities in first order, and motivated by representations of the semantics of natural
language, have formed the germ of this effort, and we are honored to celebrate Dr. Crouch’s
achievements with our addition to this volume.

2 Background
The overall goal of the SUMO effort is to capture as much knowledge as possible, in as formal and
computable a language as possible. Over the course of the long-term effort since its origin in the
year 2000, it was expected that there would be advances in logic and in automated theorem proving,
and that the collection of knowledge should not be limited by the current state of the art. At the start
of the effort, the semantics of first order logic were well-known and studied. While it was possible
at that time to perform automated inference in first order logic, the implementation of efficient
ATP with equality, enabled in part by the superposition calculus[2] was still new. It would still
be some years before the ATP community reached a standard for a classical higher order language
[5]. While it might appear risky to define axioms without a fully specified semantics, it has proven
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possible to refine and correct the body of knowledge as better support for more expressive logics
has come about[20, 17]. Had we limited the knowledge collected to what could be subjected to
efficient inference at the time, much useful knowledge would have been missed.

The more expressive the logic used, the greater opportunity to create general axioms which
have more inference power or what has been called a greater inferential closure. While the number
of axioms in SUMO beyond first order is small compared to the largest category of ground binary
relationships, they are considerably more productive when part of a chain of inference. At the time
of this writing there are the following statistics for SUMO:

Total Terms Total Axioms Total Rules
16129 227412 6955

Relations: 1713

Ground tuples: 220371
of which are binary: 150609

of which are 𝑎𝑟𝑖𝑡𝑦 > 2: 69848

Rules: 6955
of which are horn: 2311

first-order: 5103
temporal: 789

modal: 257
epistemic: 87

other higher-order: 827

There are a few dozen relations in SUMO that take formulas as arguments1:

• KappaFn

• ProbabilityFn

• attitudeForFormula

• believes

• causesProposition

• conditionalProbability

• confersNorm

• confersObligation

• confersRight

• considers

• containsFormula

• decreasesLikelihood

• deprivesNorm

• describes

• desires

• disapproves

• doubts

• entails

• expects

• hasPurpose

• hasPurposeForAgent

• holdsDuring

• holdsObligation

• holdsRight

• increasesLikelihood

• independentProbability

• knows

• modalAttribute

• permits

• prefers

• prohibits

• rateDetail

• treatedPageDefinition

• visitorParameter
1The full axiomatization of each can been seen by entering the case-sensistive term in the “KB term” field at

https://sigma.ontologyportal.org:8443/sigma/Browse.jsp?kb=SUMO&lang=EnglishLanguage
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Over the years, we have created translators[25, 16, 4]2 from SUMO’s authoring language
of SUO-KIF[14] to languages in the TPTP family of languages[23], as languages of increasing
expressiveness have become available and supported in Automated Theorem Provers. The first
translation effort was to the TPTP First Order Form (FOF) language. The first step was simply to
convert the syntax of the two languages, as SUO-KIF uses a prefix notation for logic, built on LISP
S-expression syntax and TPTP uses a combination of prefix and infix notation adhering to Prolog
syntax. Since initial uppercase identifiers in Prolog syntax are interpreted as variables, we add a
lowercase prefix to all constant terms and an uppercase prefix to all variables.

For a very simple axiom in SUMO like

(=>
(and
(connected ?X ?Y)
(part ?Y ?Z))

(connected ?X ?Z))

it becomes in TPTP FOF

fof(kb1,axiom,(![V__X,V__Y,V__Z]: (
(s__connected(V__X,V__Y) & s__part(V__Y,V__Z)) =>
(s__connected(V__X,V__Z))))).

SUO-KIF has only the basic logical operators as primitives (and or not => <=> forall
exists equal). All other constant terms must be axiomatized in SUO-KIF to state their intended
semantics explicitly. This causes an issue in that TPTP FOF requires that constant term and relation
symbols are disjoint but SUMO refers to relation symbols as arguments in defining their types.
Each relation symbol is given a suffix in translation when used as an argument to distinguish it
from the same relation symbol, when used as a relation. For example we state that a wheel is a
part of a particular car s__part(s__MyWheel,s__MyCar) but if we want to say that the part
relation takes an instances of type Object as its first argument, we append a __m suffix as in
s__domain(s__part__m,1,s__Object).

SUO-KIF has existential and universal quantifiers but for convenience, any variable that is not
quantified is assumed to be universally quantified.

All SUMO relations have a type signature. In order to enforce that signature, the translation
involves adding type guards to formulas. During translation, all the type restrictions on variables
are collected, on the basis of in which relation they appear. If multiple restrictions apply, then the
most restrictive type wins out.

The part and connected relations both take two instance of the class Object as their argu-
ments, so our example becomes

fof(kb1,axiom,(![V__X,V__Y,V__Z]: (
(s__instance(V__X,s__Object) &
s__instance(V__Y,s__Object) &
s__instance(V__Z,s__Object)) =>
((s__connected(V__X,V__Y) & s__part(V__Y,V__Z)) =>
(s__connected(V__X,V__Z)))))).

2Implemented as part of the Sigma Knowledge Engineering Environment and found at https://github.com/o
ntologyportal/sigmakee/tree/master/src/java/com/articulate/sigma/trans

3

https://github.com/ontologyportal/sigmakee/tree/master/src/java/com/articulate/sigma/trans
https://github.com/ontologyportal/sigmakee/tree/master/src/java/com/articulate/sigma/trans


An additional issue is that SUMO makes use of relation variables - variables in the relation
position. While this might indicate use of a logic beyond first order, it can be given a restricted first
order interpretation, which is what we do. The first order interpretation involves treating formulas
with a relation variable as an axiom schema, where we create a new axiom for each existing relation
SUMO that can be substituted for a relation variable.

(=>
(instance ?REL TransitiveRelation)
(=>
(and
(?REL ?INST1 ?INST2)
(?REL ?INST2 ?INST3))

(?REL ?INST1 ?INST3)))

becomes

fof(kb2,axiom(![V__INST1,V__INST2,V__INST3]:(
(s__instance(V__INST1,s__Object) &
s__instance(V__INST2,s__Object) &
s__instance(V__INST3,s__Object)) =>
(s__instance(s__part,s__TransitiveRelation) =>

((s__part(V__INST1,V__INST2) &
s__part(V__INST2,V__INST3)) =>
s__part(V__INST1,v__INST3))))

This axiom is also repeated, with the appropriate type guards, for all other
TransitiveRelations, such as subclass, larger, sister etc.

An additional language feature in SUO-KIF is that of the VariableArityRelation. We have
a similar treatment to relation variables in that axioms with a variable arity relation can be treated
as a schema, and expanded automatically. This is a restricted interpretation, but which has been an
acceptable limitation in practice, at least in our work so far. Each formula containing a variable arity
relation becomes a set of formulas, expanding the arities up to an arbitrary limit of 7 arguments and
again employing type guards. If there is more than one row variable then there will be 7𝑁 copies
of the axiom, where 𝑁 is the number of row variables.

(=>
(partition @ROW)
(and
(exhaustiveDecomposition @ROW)
(disjointDecomposition @ROW)))

Partitions of classes are exhaustive and disjoint. A partition can have a variable number of
arguments.

fof(kb3,axiom(![V__ROW1,V__ROW2,V__ROW3]:(
(s__instance(V__ROW1,s__Class) &
s__instance(V__ROW2,s__Class) &
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s__instance(V__ROW3,s__Class)) =>
(s__partition(V__ROW1,V__ROW2,V__ROW3) =>
(s__exhaustiveDecomposition(V__ROW1,V__ROW2,V__ROW3)
(s__disjointDecomposition(V__ROW1,V__ROW2,V__ROW3)))))))

fof(kb4,axiom(![V__ROW1,V__ROW2,V__ROW3]:(
(s__instance(V__ROW1,s__Class) &
s__instance(V__ROW2,s__Class) &
s__instance(V__ROW3,s__Class) &
s__instance(V__ROW4,s__Class)) =>
(s__partition(V__ROW1,V__ROW2,V__ROW3,V__ROW4) =>
(s__exhaustiveDecomposition(V__ROW1,V__ROW2,V__ROW3,V__ROW4)
(s__disjointDecomposition(V__ROW1,V__ROW2,V__ROW3,V__ROW4)))))))

etc.

The next translation effort for SUMO was an initial attempt at classical typed higher order logic,
with the TPTP THF language[4]. While this work was a largely “syntactic” translation that didn’t
handle modalities, it provided a foundation for our present work.

We also implemented a translation[16] to Typed First order form with Arithmetic (TFA)[24].
TFA requires that we state the types of variables in the syntax of the language, rather than just
as additional literals that constrain the meaning of a formula, as in SUO-KIF. There are only
a few types - numbers, booleans (notated in TFA as type “$o”) and everything else (type $i).
Numbers are further divided into rationals ($rat), reals ($real) and integers ($int). This causes
some complexity in the SUMO/SUO-KIF translator since SUMO has subclasses of integers such
as PositiveInteger. THF language and its implementations in E and Vampire do not currently
allow us to combine numbers and arithmetic functions with THF.

3 Modal Logic Axioms
Modal logic was originally developed[6] to handle the notions of necessity and possibility (called
alethic operators), expanding first order logic with these two new operators that condition first order
logical formula in a way that would conform to natural language intuitions but using formal logic.
The same framework was later expanded to addresses other modalities including knowledge, belief,
and temporal relationships.

There have come to be a set of modal axioms that researchers have argued apply to some or
all modalities. In this section we examine the modal axioms developed for modalities in SUMO
prior to undertaking a systematic analysis. We also discuss development of a set of problems to
test whether particular axioms should hold for different modalities.

Necessity is normally given the symbol□ and possibility the symbol^. They are unary operators
that hold over a formula. So “John necessarily like sushi.” would be □𝑙𝑖𝑘𝑒𝑠( 𝑗𝑜ℎ𝑛, 𝑠𝑢𝑠ℎ𝑖). The
necessity operator states that something must be true in all possible worlds. The possibility operator
holds true over only some worlds. Necessity and possibility operate identically to quantifiers (∀
and ∃, respectively) over possible worlds. They have the same relationship as our usual first order
quantifiers -

^𝜙 =𝑑𝑒 𝑓 ¬□¬𝜙 (1)
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just as ∃𝜙 =𝑑𝑒 𝑓 ¬∀¬𝜙. To avoid special symbology, like the TPTP family of modal logics, we
use ASCII symbols. A set of modal axioms (termed ‘N’, ‘D’, ‘K’, ‘T’, ‘B’, ‘4’, ‘5’ etc.) have been
developed and different sets may be assumed for particular work in modal logic

A paradox such as the Gentle Murderer, or Forrester’s paradox [22] depends upon certain
standard modal axioms from a logic of possibility and necessity also being true in a logic of
obligation. In order to provide flexibility for different axiomatizations for different modalities, we
use a general modal relation in SUMO termed modalAttribute. For each modal attribute related
to a formula, we can provide a different set of modal axioms. For example, to avoid the gentle
murderer paradox, we might eliminate axiom ’N’ for the attribute of Obligation.

Due to the fact that there are several modalities, and we claim that the axiomatizations of those
modalities are different, we introduce a parameterized modal operator 𝑀 for our notation in this
paper. 𝑀 has subscripts for each operator, and later we will see that is has additional subscripts
for its parameters, such as the agent for which the particular modality holds. Many of the standard
modal axioms are already in SUMO, for example, axiom ’D’

(=>
(modalAttribute ?FORMULA Necessity)
(modalAttribute ?FORMULA Possibility))

which we may notate more formally as 𝑀𝑛𝑃 → 𝑀𝑝𝑃, meaning that the modal operator of
necessity over a formula implies that the formula is also possible. Axiom ‘N’, the necessitation
rule, is a property of the logical system, that anything true is necessarily true: (⊨ 𝑝) ⇒ (⊨ □𝑝)).

We have ‘K’, the distribution axiom. This with ‘N’ is the most basic modal logic.

(𝑀𝑛 (𝑃 → 𝑄)) → (𝑀𝑛𝑃 → 𝑀𝑛𝑄) (2)

‘T’ - reflexivity

(𝑀𝑛𝑃) → 𝑃 (3)

axiom ‘4’

(𝑀𝑛𝑃) → (𝑀𝑛 (𝑀𝑛𝑃)) (4)

axiom ‘B’

𝑃 → (𝑀𝑛 (𝑀𝑝𝑃)) (5)

axiom ‘D’

(𝑀𝑛𝑃) → (𝑀𝑝𝑃) (6)

Note that axiom ’5’ ^𝑝 → □^𝑝 should follow from ’N’ and therefore is not in SUMO.
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3.1 Epistemic Operators
To have a comprehensive theory of world knowledge, we need to include operators for the knowledge
and beliefs of agents, so this is part of SUMO. Beliefs should intuitively apply on the basic logical
operators of conjunction and disjunction. We augment our notation here with a subscript for the
agent, so 𝑀𝑏𝑎𝑃1 signifies that an agent 𝑎 believes formula 𝑃1.

(𝑀𝑏𝑎𝑃1 ∧ 𝑀𝑏𝑎𝑃2) → (𝑀𝑏𝑎 (𝑃1 ∧ 𝑃2)) (7)

(𝑀𝑏𝑎𝑃1 ∨ 𝑀𝑏𝑎𝑃2) → (𝑀𝑏𝑎 (𝑃1 ∨ 𝑃2)) (8)

It may seem initially that this is the case for implication as well

(𝑀𝑏𝑎𝑃1 ∧ (𝑃1 → 𝑃2)) → (𝑀𝑏𝑎𝑃2) (9)

but is intuitively more questionable on its logical equivalent

(𝑀𝑏𝑎𝑃1 ∧ (¬𝑃1 ∨ 𝑃2)) → (𝑀𝑏𝑎𝑃2) (10)

‘K’ the distribution axiom is generally considered to hold for epistemic logic.

(𝑀𝑘𝑎𝑃1(𝑃1 → 𝑃2)) → (𝑀𝑘𝑎𝑃1 → 𝑀𝑘𝑎𝑃2) (11)

as does axiom ‘4’

(𝑀𝑘𝑎𝑃1 → (𝑀𝑘𝑎 (𝑀𝑘𝑎𝑃1)) (12)

Take axiom ’T’: □𝑃 → 𝑃 and replace modal box for necessity with ’knows’:

𝑀𝑘𝑎𝑃 → 𝑃. (13)

While P implies necessarily 𝑃, 𝑃 doesn’t imply that one knows 𝑃 (axiom ‘N’). Axioms ‘T’, ‘K’,
and ‘4’ appear valid in an epistemic logic, but not axiom ‘N’. If we add ‘believes’ as the analogue
to possibility, axiom ‘B’ doesn’t make sense. If 𝑃 is true that doesn’t mean one knows that one
believes 𝑃. Axiom ‘D’ is intuitively appropriate with epistemic operators - if one knows 𝑃 then
one also believes 𝑃. Axiom ‘5’ appears valid - if one believes 𝑃 then one knows that one believes
𝑃. Axioms 4 and 5 could be called ‘introspection’ axioms for the epistemic and doxastic operators.

Axiom ‘D’ is in SUMO for epistemic and doxastic operators.

(𝑀𝑘𝑎𝑃) → (𝑀𝑏𝑎𝑃). (14)

as is axiom ‘5’.

(𝑀𝑏𝑎𝑃) → (𝑀𝑘𝑎 (𝑀𝑏𝑎𝑃)). (15)
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4 Deontic logic
It is typical to map obligation to necessity and permition to possibility. However, ‘N’ doesn’t make
sense - if 𝑃 is true that doesn’t mean it’s obligatory. ‘K’ could be true - it’s obligatory that if you
steal money you steal a small amount of money, therefore if you’re obliged to steal money then
you’re obliged to steal a small amount of money (at least several times over). Or should we say
if one is obliged to steal money (and one does) that one has in fact also stolen a small amount of
money (several times over). We give 𝑀 subscripts 𝑜 for obligation, 𝑝 for permission etc. Let 𝑝 be
the proposition that one steals money. We should further clarify the standard example that 𝑝 should
be the proposition that one steals a large amount of money, since if 𝑝 stands only for the general
proposion of stealing money, maybe it’s a tiny or insignificant amount of money. So 𝑝 stands for
the proposition that one steals a large amount of money and let 𝑝′ be the proposition that one steals
a small amount of money. If 𝑀𝑜𝑝 → 𝑀𝑜𝑝

′ should at the very least only hold true if 𝑝′ ∈ 𝑝.
Axiom ‘T’ does not appear to be true of obligation - if you ought to do 𝑃 that doesn’t mean 𝑃

is true since people don’t always do what they’re supposed to. Axiom ‘4’ is questionable - if you
ought to do 𝑃 does that mean you ought to ought to do 𝑃? Axiom ‘B’ is problematic - if 𝑃 is true
then ought it to be permissible to 𝑃? If someone committed murder that doesn’t mean that one
ought to be permitted to commit murder. Axiom ‘D’ however appears to make sense - if you ought
to do 𝑃 then you should be permitted to do 𝑃. We have this in two forms in SUMO:

(=>
(confersNorm ?E ?F Obligation)
(confersNorm ?E ?F Permission))

(=>
(modalAttribute ?FORMULA Obligation)
(modalAttribute ?FORMULA Permission))

and a related axiom

(=>
(deprivesNorm ?E ?F Permission)
(deprivesNorm ?E ?F Obligation))

we might therefore add

(=>
(modalAttribute (not ?FORMULA) Permission)
(modalAttribute (not ?FORMULA) Obligation))

Axiom ‘5’ seems a little problematic - if you have permission for 𝑃 does that mean you’re
obliged to have permission? It may be dangerous to have obligation and permission without an
authority - what does it really mean that 𝑃 is permitted? If there’s no authority, there can be no
notion of permissibility, just possibility. Permission and obligation are always with respect to an
authority. “He was permitted to do X (by authority Y).” Once relativized to an authority ’5’ makes
a bit more sense, but only if we have a hierarchy of authority - if entity 𝑋 gives you permission
to do 𝑌 then maybe some parent authority 𝐴 should have obliged 𝑋 to give you permission for 𝑌 ,
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but that all starts to sound rather contrived. To support the notion of an authority conferring or
depriving norms, SUMO has the modal operators confersNorm and deprivesNorm.

We need many more examples in a common, computable, multi-modal framework to make sure
our intuitions accord with a particular axiomatization, and that the axiomatization is consistent
across all modalities, and in conjunction with the other formulas that we need to state about the
world. Having a much larger inventory of practical axiomatizations of aspects of the world should
help to highlight different scenarios where our modal axioms might be true or false.

5 Temporal Logic
SUMO has Allen’s 13 temporal relations between intervals[1], and functions that allow specification
of calendar dates and times. The function WhenFn allows us to related temporal specifications to
Processes. All the preceding can be handled in first order. However, we also have the relation
holdsDuring, which relates a TimePosition (points and intervals) to a Formula.

One system of temporal model logic is that of [18]. There are four modal operators in Prior’s
system

• P: "It was the case that..." (P stands for "past")

• F: "It will be the case that..." (F stands for "future")

• G: "It always will be the case that..."

• H: "It always was the case that..."

We take ‘P’ and ‘F’ to be “It was/will be the case (at one point) that...”. These can be handled
in SUMO with the functions FutureFn and PastFn along with a diectic[12] Now. For example,
“It was the case that John had a blue car.”

(exists (?C ?T)
(holdsDuring ?T
(and
(during ?T (PastFn Now))
(instance ?C Automobile)
(possesses John ?C)
(attribute ?C Blue))))

‘F’ is handled by instead using (FutureFn Now) and ‘G’ and ‘H’ by having the holdsDuring
over the entire (PastFn...) or (FutureFn...) rather than just being during the period.

6 Translation of Modalities
We employ Kripke’s possible worlds semantics[9] 3.

3The notion of possible worlds was first conceived by Liebnitz and also developed by Kripke’s contemporary,
Lewis[11]
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We relax the requirements (per [21]) having the “normal” axiom ‘K’. We use Kripke’s notion
of an accessibility relation between possible worlds. The intuition is that modalities select sets of
worlds that are related to other worlds. A benefit of this approach is that we can state some formulas
involving modalities in a first order logic, as well as using them in higher order logic.

We employ the standard relational semantics for modal logic. A relational model is a tuple
𝔐 = ⟨𝑊, 𝑅,𝑉⟩ where: 𝑊 is a set of possible worlds, 𝑅 is a binary relation on𝑊 (which we call the
accessibility relation between worlds), and 𝑉 is a valuation function which assigns a truth value to
each pair of an atomic formula and a world, (i.e. 𝑉 : 𝑊 × 𝐹 → {0, 1} where 𝐹 is the set of atomic
formulae.

Many modal operators in SUMO use the relation modalAttribute, which takes a Formula
and a modal operator as arguments, as we’ve seen in some of the discussion above. There are
an additional number of modalities that take a parameter of some sort, and a formula. These are
considers, sees, believes, knows, holdsDuring, and desires. holdsDuring is different
than the others in that its parameter is a TimePosition rather than an Agent.

Each of the modalities constrain the set of worlds in which a formula is true. We add a world
parameter to every logical literal. Start with the SUO-KIF formula

(authors ThomasEdison HarryPotterSorcersStone)

that makes the questionable assertion that Thomas Edison authored a Harry Potter book. But

(believes JohnSmith
(authors ThomasEdison HarryPotterSorcersStone))

is a bit more reasonable, that merely some deluded person believes he wrote that book. So in
the set of worlds corresponding to what John Smith believes, Edison wrote the book. We translate
this into an implication (involving an accessibility relation between worlds, and adding a world
argument for every logical literal in the formula) that constrains the worlds in which this is true

(accreln believes JohnSmith ?W ?W2) =>
(authors ThomasEdison HarryPotterSorcersStone ?W2))

We can also compose modalities, or nest them. Let’s say that John only believes this statement
on Tuesdays.

(and
(instance ?T Tuesday)
(holdsDuring ?T
(believes JohnSmith
(authors ThomasEdison HarryPotterSorcerersStone))))

This becomes

(and
(instance ?T Tuesday)
(accreln holdsDuring ?T ?W ?W2) =>
(accreln believes JohnSmith ?W2 ?W3) =>
(authors ThomasEdison HarryPotterSorcerersStone ?W3))
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and in THF (leaving aside for now details like term name prefixing, for clarity)

thf(kb5,axiom,
(![W:w,W2:w,W3:w,X:$o,Y:$o,A:$i]:(
(((instance @ T @ tuesday) &
((accreln @ holdsDuring @ T @ W @ W2) =>
((accreln @ believes @ johnSmith @ W2 @ W3) =>
(authors @ thomasEdison @ harryPotterSorcerersStone @ W3))))).

7 Test Problems
We have just a handful of test problems at the moment4, including one that is designed not to get an
answer/refutation. We are using "Vampire 4.8 HO - Sledgehammer schedules (2023-10-19)" and
"E 3.0pre008 Shangri-La (57b1a04ffd1869871b2c863334343811aea78b68)" on an 8 core Lenovo
laptop. But the problems are all quite small so the execution times are minimal.

Problem Vampire Eprover
TQM2.tff 0.026 0.008
TQM3.tff correct, saturation correct, saturation
TQM3.thf 0.015 0.033
TQM6g.tff 0.008 0.291
TQM6g.thf 0.094 0.35
TQM7.tff 0.011 0.009
TQM7.thf 0.01 0.01

• Problem TQM2 encodes that “Mary knows that Bill likes Sue and Bob likes Joan. Does
Mary know that Bill likes Sue. Does Bill like Sue?”

• Problem TQM3.tff encodes that “Bill believes that the Earth is flat. Does Bill know that the
Earth is flat?” TQM3.thf adds “If you circumnavigate the Earth and it’s flat you will die. Joe
circumnavigates the Earth. Does Bill believe Joe will die?”

• Problem TQM6g encodes that “Bill believes things until they are contradicted and then
believes the latest thing. Bill sees Mary wearing a red hat (after he sees her wearing a
green hat). What color does Bill believe Mary is wearing (now)?”. The THF version of this
problem is able to state the first sentence generally, but in TFF it has to be specific to the
wearing of colored hats.

• Problem TQM7 is from the QMLTP problems5 and encodes “if a second class flight to Paris
necessarily costs $70.00 and I necessarily fly to Paris second class, what is the necessary cost
of my flight?”. The THF and TFA versions are similar other than we can have numbers in
the TFA version but the THF version uses constant terms.

4TQM* problems at https://github.com/ontologyportal/sumo/tree/master/tests/TPTP
5http://www.iltp.de/qmltp/problems.html
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8 Higher Order Interpretations
One advantage of moving to a THF translation of SUMO is that we would have less preprocessing
to do for axioms with type guards, predicate variables and row variables. We can refer to relations
directly as objects in the logical language and directly use SUMO’s domain relation that specifies
argument types. We could simplify this even in TFF, as long as we rename relations (which we do
with a suffix ‘__m’) when they appear as arguments. To implement this approach in THF however
we would still need numbers, which are not yet part of THF.

tff(kb1,axiom,(![V__X:$i,V__Y:$i,V__Z:$i,T__X1:$i,T__Y1:$i,T__Y2:$i]: (
(s__domain(s__connected__m,1,T__X1) & s__instance(V__X,T__X1) &
s__domain(s__connected__m,1,T__Y1) & s__instance(V__Y,T__Y1) &
s__domain(s__connected__m,1,T__Z1) & s__instance(V__Z,T__Z1) &
s__domain(s__part__m,1,T__Y2) & s__instance(V__Y,T__Y2) &
s__domain(s__part__m,1,T__Z2) & s__instance(V__Z,T__Z2)) =>
(s__connected(V__X,V__Y) & s__part(V__Y,V__Z)) =>
(s__connected(V__X,V__Z))))).

In THF we do not need to instantiate predicate variables, which significantly reduces the size
of the resulting translation from SUMO, since we don’t need potentially hundreds of copies of the
same formula, such as the axiom of transitivity, for every transitive relation (again assuming that
numbers will eventually be supported in THF).

thf(kb1,axiom,(![V__INST1:$i,V__INST2:$i,V__INST3:$i,
V__R:$i,V__T1:$i,V__T2:$i,V__T3:$i]: (

((s__domain @ R @ 1 @ V__T1) & (s__instance @ V__INST1 @ V__T1) &
(s__domain @ R @ 2 @ V__T2) & (s__instance @ V__INST2 @ V__T2) &
(s__domain @ R @ 1 @ V__T1) & (s__instance @ V__INST2 @ V__T1) &
(s__domain @ R @ 2 @ V__T3) & (s__instance @ V__INST3 @ V__T3)) =>
((s__instance @ R @ s__TransitiveRelation) =>

(((R @ V__INST1 @ V__INST2) &
(R @ V__INST2 @ V__INST3)) =>
(R @ V__INST1 @ V__INST3))))))

9 Conclusions and Future Work
We have shown that it is possible to take SUMO’s modal axioms and embed them in a multi-modal
logic framework in TFF and THF. Our next step is to implement an automated translator for SUMO
that generates TFF and THF, rather than using our current manual approach. The present work is a
means to an end of being able to do practical reasoning with knowledge about beliefs, obligations,
temporal qualification etc. Once we have an automated translation in place that embodies the
manual translations presented, we will attempt to create more tests to determine if we can develop
a practically useful system of modal operators and axioms that is also logically consistent. Since
up until this point we have only been able to do manual proofs with SUMO’s modal constructs,
a fully automated framework should allow us to make more rapid progress, and provide a higher
level of assurance that the resulting system is logically valid.
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