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Abstract

Large Language Models (LLMs) have shown strong performance in translating natural
language into programming languages like Python or Java. However, for niche computer
languages, where there is limited training data, fine-tuning a base model is often necessary.
A key challenge arises when the pretrained embeddings of natural language terms interfere
with the intended syntax and semantics of formal language terms. This issue is especially
pronounced in the logical language of SUO-KIF, which is used in the Suggested Upper
Merged Ontology (SUMO). SUMO contains thousands of terms that closely resemble ev-
eryday English words. As a result, models often produce syntactic errors or hallucinate
non-existent terms due to conflicting embeddings learned during base training.

This work introduces a tokenization-based technique to mitigate these issues. By al-
tering how formal terms are tokenized, we can decouple their embeddings from similar
natural language words, significantly reducing syntax errors and term hallucinations in the
generated formal language output.

1. Introduction

Formalizing natural language into logic-based representations is a long-standing goal in
artificial intelligence, as a way to enable machines to reason about the world. While recent
large language models (LLMs) have excelled at translating natural language prompts into
programming languages like Python or Java, less attention has been paid to niche formal
languages that support knowledge representation and logical inference.

One such language is SUO-KIF, a higher-order logic language used in the Suggested
Upper Merged Ontology (SUMO). The language and ontology together allow for the formal
specification of entities and their attributes, enabling automated reasoning. For example,
the sentence “The apple is red” may be formalized as:

(exists (7C) (and (instance ?C Apple) (attribute ?C Red)))

Although the logical language is quite simple, with keywords for just a few logical
operators (and, or, not, forall, exists, <, = and equals), we also must ensure that logical
statements use the correct terms from the SUMO library, and there are approximately
20,000 of these. The problem may be considered similar to not only generating the correct
syntax for Python or Java, but also selecting the right function or method names from tens
of thousands of possible choices in libraries.

Another challenge that arises is that SUMO terms often resemble everyday English
words. Despite fine-tuning, LLMs frequently produce syntax errors and hallucinated terms
due to statistical associations learned during pretraining. LLMs break input into subword
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Figure 1: Simplistic view of an embedding space, where similar tokens are grouped together.

tokens and embed them in a semantic space, where related terms cluster, as shown simplis-
tically in Figure 1.

Strong embeddings can create a problem when translating to SUO-KIF. For example,
variables begin with “?” and have no whitespace in SUO-KIF, while English treats “?” as
punctuation. Sentences translated from English often have a space incorrectly inserted after
the “?” in SUO-KIF. Similarly, models may confuse formal SUMO terms like BatMammal
with invalid hallucinated ones like BatAnimal, driven by natural language co-occurrence.

To address this, we introduce a method to re-ground formal SUMO terms in a way
that decouples them from natural language embeddings. SUMO terms are mapped to new,
unrelated tokens. During the fine-tuning process these new terms are grouped appropri-
ately in the embedding space, but lack the undesired positional encodings and statistical
correlations of previous tokens. This reduces both syntax errors and term hallucinations,
significantly improving SUO-KIF generation quality.

2. Related work

Researchers have shown fine-tuning to be an effective way to improve generation of pro-
gramming language statements (Shypula et al., 2024). Progress has also been made in
auto-formalization of mathematical problems that have been expressed semi-formally (Wu
et al., 2022). In translating from one language to another, improper tokenization has been
shown to increase the rate of hallucinations of terms (Wang et al., 2024).

Ontology alignment and grounding have traditionally focused on matching human con-
cepts across knowledge bases, but not on decoupling formal representations from their nat-
ural language counterparts within generative models. Previous work in semantic grounding,
such as retrofitting embeddings using ontology structures (Faruqui et al., 2015) or concept
embeddings from WordNet (Camacho-Collados et al., 2016), aligns knowledge bases based
on semantic similarity. However, these methods still preserve natural language proximity
and do not address the situations where that proximity is problematic.

Several approaches have been proposed to handle domain-specific vocabularies in neural
language models. Vocabulary expansion techniques add domain-specific terms directly to
the model’s token vocabulary (Toraman et al., 2023), but this approach significantly in-
creases memory requirements, computational cost, and training time. Additionally, when
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domain terms closely resemble existing vocabulary (as is often the case with SUMO terms),
vocabulary expansion only mitigates the embedding interference problem.

3. Background
3.1. SUO-KIF

SUO-KIF (Standard Upper Ontology—Knowledge Interchange Format) is a formal language
designed for expressing ontological and logical statements in a machine-readable way (Pease,
2009). Unlike more widely adopted languages such as the OWL family of description logics,
SUO-KIF provides a more expressive higher order logic (Benzmiiller and Pease, 2010). It
is particularly suited for encoding complex conceptual knowledge.

3.2. SUMO

The Suggested Upper Merged Ontology (SUMO) is a comprehensive formal ontology origi-
nally intended to provide a foundation for more specific domain ontologies (Niles and Pease,
2001; Pease, 2011). Developed to support automated reasoning, SUMO includes thousands
of terms and axioms written in SUO-KIF that describe abstract concepts (e.g., Attribute,
Quantity) and concrete entities (e.g., Apple, Book).

3.3. T5 and Flan-T5

T5 (Text-to-Text Transfer Transformer) and its variant Flan-T5 are transformer-based lan-
guage models that frame NLP tasks as text generation problems (Raffel et al., 2023). In
our work, we experiment with both T5 and Flan-T5 as the base models for translating
informal English prompts into formal SUO-KIF expressions. Trained on a wide range of
tasks using a unified format, T5 and Flan-T5 have shown strong performance across trans-
lation benchmarks, and are considered state of the art (Longpre et al., 2023). Tokenization
was conducted using the native T5Tokenizer, which is based on the popular SentencePiece
tokenizer (Kudo and Richardson, 2018).

A Note on vocabulary expansion: An alternative solution to explore is vocabulary ex-
pansion, where whole SUMO terms are explicitly added to the token set, and then selection
of only these tokens is forced in the output. This approach has been shown to significantly
increase memory requirements, cost, and training time (Toraman et al., 2023). Additionally,
many SUMO terms align exactly with existing tokens, thus vocabulary expansion mitigates,
but does not eliminate the issue.

4. Methodology

Training data consisted of approximately 6 million English sentences with their SUO-KIF
logic equivalent. Both SUO-KIF key words, variables, and unique SUMO terms were ex-
tracted from the training data and assigned a corresponding label composed of five random
capital letters. An example is shown in Table 1. For example, the SUMO term Historian
was mapped to AJOFN. In this way, we semantically separate the SUMO term from its En-
glish token, without a strong grounding in the model. During training, the new mappings



are moved to appropriate locations in the embedding space. Characters such as parentheses
and whitespace were not translated, as the base model already handles them properly.

Table 1: An example of re-grounding

English sentence The historian is not awake right now.
Logic translation (not
(exists (7H)
(and

(attribute 7H Historian)
(equal ?T Now)
(holdsDuring ?T (attribute 7H Awake)))))

Re-grounded translation | (SIRQJ
(LOAXA (UGQJQ)
(QAGRM
(RJIGUO UGQJQ AJOFN)
(ANNFF KABBQ OFHBH)
(ILEGC KABBQ (RJGUO UGQJQ LZEJO)))))

Fine-tuning is conducted using both the Flan-T5 and T5 model. A baseline model
was fine-tuned for each, using the English sentences and the normal logic translations for
training data. Re-grounded models were also trained for both Flan-T5 and the T5 models,
using the English sentences and the re-grounded translations.

After training the models, testing was conducted on a standard set of 100 test sentences,
chosen for their grammatical diversity, that remained constant through the experiment.
Additionally, testing was conducted with 100 sentences randomly chosen from a corpus of
policy documents comprising approximately 60,000 sentences. For the models trained using
re-grounded SUMO terms, postprocessing was conducted to translate the model output
back to the corresponding SUMO terms.

5. Results

Results using a static set of sentences are shown in Table 2. Results with sentences pulled
randomly from a large corpus are shown in Table 3. A translation was considered syntac-
tically correct if it followed the SUO-KIF grammar rules, without regard to type accuracy.
A translation was considered type correct if all terms had a corresponding term in SUMO.
An important caveat to the baseline data is that the syntactic accuracy was only achieved
with postprocessing by ensuring there was white space before the “?” character, and re-
moving any white space between it and the variable name. Without this postprocessing
step, not a single sentence would be syntactically correct when using either baseline model.
This postprocessing step is not conducted (or needed) for the re-grounded models.
Re-grounding SUMO terms had a significant positive impact in both the T5 and Flan-
T5 models. Type accuracy improved greatly, and fewer terms were hallucinated. It is
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Table 2: Percent of sentences translated correctly on standard test set.

(a) Baseline (b) SUMO Terms Re-grounded

T5 Flan-T5 T5 Flan-T5
Syntax correct 45% 72% Syntax correct  94% 93%
Types correct 8% 9% Types correct  66% 74%
Both correct ™% 8% Both correct 61% 70%

Table 3: Percent of sentences translated correctly on randomized test set.

(a) Baseline (b) SUMO Terms Re-grounded

T5 Flan-T5 T5 Flan-T5
Syntax correct 53% 58% Syntax correct  90% 85%
Types correct 3% 4% Types correct  63% 74%
Both correct 3% 4% Both correct 59% 62%

hypothesized that greater grammar and vocabulary diversity in the training data will further
reduce remaining type errors. Future work should include a study on how the extent of
term re-grounding affects the semantic accuracy of the translation. While it did not appear
to have had much impact, the impact will become clearer as the diversity of the training
set grows.

6. Conclusion

This study demonstrates that formal terms that overlap semantically or syntactically with
everyday English significantly hinder the accurate translation of natural language into for-
mal languages like SUO-KIF. We introduced a simple yet effective tokenization-based re-
grounding technique that disconnects formal SUMO terms from their natural language em-
beddings. By mapping these terms to randomized token sequences, we reduce the influence
of pretrained embeddings and improve both syntactic and type accuracy. Our experiments
with T5 and Flan-T5 models show that this approach dramatically outperforms baseline
fine-tuning in terms of correctness and robustness. This method itself is model agnostic,
computationally lightweight, and requires no vocabulary expansion. Future work will ex-
plore its effects on semantic fidelity and extend its application to more diverse language
inputs.
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